8問目
次の1000桁の数字の中で, 連続する5つの数字の積の最大値を求めよ.
http://projecteuler.net/index.php?section=problems&id=8
(図省略)
う〜ん, 結局力技(brute-force)になると思い, 一応計算量を減らす工夫をした解も書いてみました. 例によって, 力技でも十分速かったですが(汗)
#include <stdio.h> #include <stdlib.h> #define NUM_DIGITS 5 #define MAX_LENGTH 1000 int value(int); int solveVer01(); int solveVer00(); enum state {up, levelOrDown}; char digits[] = "73167176531330624919225119674426574742355349194934\ 96983520312774506326239578318016984801869478851843\ 85861560789112949495459501737958331952853208805511\ 12540698747158523863050715693290963295227443043557\ 66896648950445244523161731856403098711121722383113\ 62229893423380308135336276614282806444486645238749\ 30358907296290491560440772390713810515859307960866\ 70172427121883998797908792274921901699720888093776\ 65727333001053367881220235421809751254540594752243\ 52584907711670556013604839586446706324415722155397\ 53697817977846174064955149290862569321978468622482\ 83972241375657056057490261407972968652414535100474\ 82166370484403199890008895243450658541227588666881\ 16427171479924442928230863465674813919123162824586\ 17866458359124566529476545682848912883142607690042\ 24219022671055626321111109370544217506941658960408\ 07198403850962455444362981230987879927244284909188\ 84580156166097919133875499200524063689912560717606\ 05886116467109405077541002256983155200055935729725\ 71636269561882670428252483600823257530420752963450"; int main() { fprintf(stdout, "Solution: %d\n", solveVer00()); return 0; } int value(int index) { return (digits[index] - '0') * (digits[index+1] - '0') * (digits[index+2] - '0') * (digits[index+3] - '0') * (digits[index+4] - '0'); } int solveVer00() { int i, maxValue; maxValue = 0; for (i = 0; i < MAX_LENGTH - NUM_DIGITS; i++) { if (maxValue < value(i)) { maxValue = value(i); } } return maxValue; } int solveVer01() { int i, maxValue; enum state prevState; maxValue = 0; prevState = up; for (i = 0; i < MAX_LENGTH - NUM_DIGITS; i++) { if (digits[i] >= digits[i+NUM_DIGITS]) { if (prevState == up && maxValue < value(i)) { maxValue = value(i); } prevState = levelOrDown; } else { prevState = up; } } return maxValue; }